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SUMMARY 

This paper discusses aspects of vectorizing a recently developed calculation procedure for multidimensional 
recirculating fluid flows. The solution algorithm uses a coupled Gauss-Seidel relaxation operator in 
conjunction with the multigrid technique. The vectorization is performed on a CRAY X-MP/48 using a 
single processor. In this paper, the vectorization techniques used and the observed speed-ups are presented 
for a model problem of laminar flow in a two-dimensional square cavity. Large scale calculations with up to 
one quarter of a million finite difference cells (512 x 512) have been made in 45s of CPU time. 

KEY WORDS 

1. INTRODUCTION 

The development of supercomputers, such as the CRAY-1, CRAY X-MP and CYBER 205, 
provides new avenues for obtaining significant reductions in CPU time in the numerical 
calculation of steady and time-dependent multidimensional fluid flows. Apart from the significan- 
tly faster clock times, these computers are built on new architectures exploiting the concepts of 
vector and parallel processing. However, in order to use the complete benefits provided by the 
machines, it is necessary that the algorithms underlying the solution of the equations be adaptable 
to such architectures. Otherwise, the computer program will run essentially at the scalar speed 
and significant idling and overhead on the parallel processors can result. Exploiting fully and 
intelligently the machine architecture can provide significant speed-up of the calculations, 
sometimes much more than that provided by improvements to the algorithm, and with much 
less effort. 

In this paper, we discuss the aspects of vectorization of a recently developed'.2 finite difference 
calculation procedure for steady, multidimensional recirculating flows. The algorithm, BLIMM 
(for block-implicit multigrid method) is based on a coupled solution of the multidimensional 
momentum and continuity equations in primitive variables using the multigrid technique of 
Brandt3 The relaxation of the equations is done simultaneously by a symmetrical coupled 
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Gauss-Seidel operator as described in Reference 1. A staggered mesh arrangement of the velocities 
and pressures is used and the equations are relaxed node by node. At each finite difference cell, 
four (or six) velocities on the faces of the cell and the pressure are simultaneously updated by 
solving the relevent momentum equations and the continuity equation. Such a coupled update 
used in conjunction with the multigrid technique is observed to provide rapid solutions to the 
finite difference  equation^'.^.^.^ in ' a variety of flows of practical importance. 

Since the development and availability of vector computers, several studies have been reported 
in which linear algebra algorithms and fluid flow calculations have been vectorized. A recent 
detailed review of such studies is given by Ortega and Voigt.6 For the fluid flow equations, 
vectorized calculations have been reported, for example, by Shang et al.,' Redhed et a1.,8 Chima 
and Johnson' and Smith and Pitts." A majority of these studies have been concerned with the 
solution of the equations by some variant of the McCormack's scheme. A two-step time marching 
scheme is used and the variables are updated in an explicit manner with the right-hand side 
terms evaluated at the previous step. In comparison with these studies, techniques based on 
fully implicit formulations are more complex to vectorize. The complexity results from the 
necessity of using some form of matrix factorization using Gaussian elimination. Fully implicit 
formulations, however, are very attractive when the interest is only in the final steady-state 
solution rather than in the time evolution of the flow. Such formulations are equivalent to taking 
an infinitely large time step and iterating at that time step. This presents new difficulties in the 
vectorization.6 

The present algorithm is a fully implicit method. In addition, it uses a staggered mesh 
arrangement, coupled update and the multigrid technique. These features introduce further 
difficulties and constraints to the vectorization process, one such being the preservation of 
adequate vector lengths on the coarse grids. Barkai and Brandt" and HolterI2 have recently 
presented techniques to vectorize the muligrid solution of the Poisson equation on the Cyber 
205 machine. A point Gauss-Seidel method with red-black colouring was used and the discrete 
variables were stored in two long vectors corresponding to each colour. Because of the five-point 
stencil and the colouring, the variables are updated by adequate offsets to the arrays. However, 
such collapsing of the variables into two arrays is not possible for the present algorithm because 
of the coupled symmetrical solution of the velocities. 

In this paper, we describe the steps followed in vectorizing the block-implicit multigrid technique 
and present the observed reductions in CPU time due to vectorization. The subsequent sections 
are organized as follows. In section 2 the algorithm and the data structures are described. 
Emphasis is given to the specific relaxation procedure used and not to the general concept of 
the multigrid technique, because this is by now very well d ~ c u m e n t e d . ~  The details of the 
vectorization, including the colouring strategy, are given in section 3. In section 4 the details of 
the convergence and the required CPU times for calculations of flow in a driven cavity are 
presented. Three Reynolds numbers and several finite difference grids are considered. Section 5 
provides a summary of the present contribution. 

2. SOLUTION ALGORITHM 

Overall features 

The solution algorithm discussed here solves the fully elliptic two- (and three-) dimensional 
Navier-Stokes equations in primitive variables. Currently only steady incompressible flows have 
been considered. However, the procedure is equally applicable to time-varying flows when fully 
implicit algorithms are advantageous, and to compressible flows at high subsonic Mach numbers. 
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The concepts of the algorithm are also being used to calculate turbulent and chemically reacting 
fluid flows such as those in gas turbine and ramjet combustors. The two important concepts in 
the solution algorithm are the coupled solution of the equations and the multigrid technique of 
Brandt.3 The coupled solution, with the continuity equation expressed in its primitive form, 
eliminates the need for a pressure or pressure-correction equation that is commonly used. The 
coupled relaxation of the equations is rapidly convergent and is advocated on the basis of results 
of recent  experience^.'^-'^ The details of the multigrid concepts are reviewed by Brandt3 and 
the present incorporation is described by Vanka.'.2 Therefore, only those features of the algorithm 
that are necessary for describing the vectorization will be given here. 

The concept of using multiple grids is that traditional iterative schemes such as Jacobi, point 
Gauss-Seidel, ADI, etc., are rapidly convergent for error wavelengths of the size of the mesh 
width, but are very slow to converge for low-frequency components. However, low frequencies 
on one grid can be made large by solving the appropriate fine grid equations on a coarser grid 
and correcting the fine grid solution. Several levels of coarse grids can be considered and the 
solution is cycled between the finest grid and the coarse grids. In this way, the asymptotic 
convergence on the finest grid is as rapid as in the initial iterations and on model problems it 
is shown to be invariant with mesh size. Several variants of the cycling are possible, including 
V-cycle, W-cycle and the adaptive full multigrid method (FMG). The cycle used in our algorithm 
is the adaptive full multigrid method, which is appropriate for non-linear problems. 

The three main components in the technique are (i) the relaxation procedure, (ii) the restriction 
operator and (iii) the prolongation method. A substantial amount (about 85 per cent) of the 
CPU time is spent in the relaxation process on the coarse and fine grids. Thus vectorization of 
the relaxation procedure and consequent design of the data structures is of great importance. 
The restrictions take about 10 per cent of the time and the remainder is spent in prolongations 
and other overheads. The three calculation steps are now explained in detail. 

Relaxation procedure 

The multigrid technique can be used in conjunction with all conventional relaxation procedures 
such as SOR, ADI, conjugate gradient methods, etc. The extensions of these to coupled relaxation 
leads to a block-structured operator with a block size equal to the number of equations (three 
for two-dimensional flows and four for three-dimensional flows). The optimal procedure depends 
on the ellipticity of the problem and the degree of anisotropy in the coefficients. In the present 
algorithm, a point Gauss-Seidel scheme is used because of its small operation count. However, 
at any cell, velocities on all the faces of the cell are solved simultaneously. 

The finite difference equations are derived from the differential equations by a control volume 
approach, but are subsequently written in terms of unit volume for easy use in the multigrid 
context. A staggered mesh system is used in locating the velocities and pressures on the finite 
difference grid. Thus velocities are stored on the cell faces and pressure is situated at the cell 
centres. The resulting finite difference equations at a cell ( i , j )  of a two-dimensional grid can be 
written as 
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(AE)i,j+ l/Z'i,j+ 1/2 = (Ak) i , j+  l / Z u i , j + 3 / 2  + ('%)i.j+ 1/Zui,j-  1/2 

+ ( ~ ~ ) i , j + l / z u i + l , j + 1 / 2  + ( A ( l y ) i , j + 1 / 2 U i - l , j + l / ~  

+ b i , j  - P i , j +  I ) / P  ' Y  + T , j +  1 /2  

+ ( A ~ ) i , j - 1 / 2 V i + l , j - 1 / 2  + ( ~ ~ ) i , j - l / z u i - l , j - 1 / 2  

+ b i , j -  1 - p i , j ) / P  ' Y  + T , j -  112 9 

(3) 

(AE)i,j-  1/Zui,j-  1 /2  = (Ak)i,j- l / Z u i , j +  1 /2  + (A%,j- 1/2'i ,j-3/2 

(4) 

( 5 )  ( U i + l / Z , j - U i - l / z , j ) / d x  + ( u i , j + 1 / 2  - u i , j - ~ / ~ ) / ' ~  = O .  

The nomenclature for the variables is given in an Appendix. The fractional indices refer to locations 
of the cell faces. The first four equations given above refer to the four velocities on the cell faces and 
the fifth equation expresses the mass continuity. 

At any given cell, these five equations are solved simultaneously. This gives a matrix of the 
structure 

where 

a 1 1  = ( A E ) i - l / 2 , j ,  a22 = ( A E ) i + 1 / 2 , j ,  

a 3 3  = (&)i,j- 112, a44 = (AE)i,j+ 1/2  

a I 5  = - l/pdx, a25  = l/p6x, etc. 

X I  = ~ : - 1 / ~ , j ,  ~ ~ = 4 + 1 / 2 , j ,  

~ 3 = v I , j - 1 / 2 ,  ~ 4 = v i , j + 1 / 2 ,  x 5  =p;,j .  (7) 
r l ,  r2 etc. are residuals in the corresponding equations (i.e. differences between the right- and left- 
hand sides) and u' ,d  and p' are corrections to the velocities and pressure. In FORTRAN 
convention, the velocities updated at a node (I, J) are indexed as U(1-1, J), U(1, J) V(1, J-1) and 
V(1, J). One relaxation sweep includes visits to all the cells and solution of nodal equations such as 
equation (6). The matrix is inverted analytically with explicit expressions written for b, to b,. 

The symmetrical solution at each node differs from a coupled solution in which only one-side 
velocities and the pressure are updated. Such an unsymmetrical update is observed to have a poor 
convergence behaviour. ' The coupled relaxation differs from relaxation procedures such as the 
distributive Gauss-Seidel proposed by Brandt3 and used by Fuchs and Zhao.16 The coupled 
relaxation is advantageous when the pressure field plays an important role in flow development. 
Traditionally, internal flow calculations have been observed to be quite sensitive to the manner in 
which the pressure field is e~a lua ted . '~  Consequently a coupled relaxation is currently used and 
advocated for internal flows. 

Restriction operator 

'Restriction' is used for the process of interpolating values on a fine grid to a subsequent coarser 
grid. In the FAS-FMG multigrid procedure, restriction of the solution as well as the residuals is 
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necessary. For a staggered mesh, restriction of the variables involves an averaging of neighbour 
values. The averaging relations are different for the two velocities and the pressure. With 
u(i + 1/2,j) denoted as u(i,j), and superscripts c and f denoting coarse and fine grid values, 
respectively, the relation for restricting the u-velocity solution (and residual) is 

(8) uc(ic,jc) =+[u'(if,jf) + u'(if,jf - l)]. 

Similarly, for the u-velocity (and its residual) the relation is 

uc(ic,jc) =$[u'(if,jf) + u'(if- l,jf)]. 

pc(ic,jc)=a[p'(if,jf)+p'(if- 1,jf) +pf(if,jf- 1) +p'(if- 1,jf- I ) ] ,  

(9) 

(10) 

The pressure is averaged with four values, as follows: 

where if = 2(ic) - 1 and jf = 2(jc) - 1 

Prolongat ion 

A bilinear prolongation operator is used in this study to extrapolate coarse grid values to a finer 
grid. For three-dimensional flows, a trilinear relation is used. The prolongation process 
extrapolates corrections (and solutions) to the fine grid from values on the adjacent coarse grid. 
Four coarse grid values are used to derive four fibe grid values. For the u-velocity, the relations are 
as follows: 
Let 

if = 2(ic) - 1, jf =2(jc) - 1. 

then 

u; = u(ic, jc), uq = u(ic, jc + l ) ,  

us = u(ic + 1, jc), u: = u(ic + 1, jc + 1 ) .  

Similar relations can also be derived for three-dimensional flows. 

where 

3. VECTORIZATION 

In this section the details of vectorizing the algorithm are explained. Much of the attention is given 
to the relaxation operator because of the associated special difficulties and its importance with 
regard to a CPU time criterion. Vectorizing the restriction and prolongation phases is 
straightforward as it only requires assembling appropriate residuals and averaging. Techniques 
such as colouring and special boundary indices are not necessary for the restriction and 
prolongation routines. 

Data structures 

In the multigrid framework, it is convenient to store all variables in one-dimensional arrays and 
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access them with appropriate offsets. This is because the size of a variable array for each grid is 
different. Thus the values corresponding to the finest and all coarse grids are packed in single arrays 
U, V and P. The residuals that are transferred from one grid to the other must be stored only for the 
coarse grids and they too are stored in one-dimensional arrays RESU, RESV and RESC. These 
represent the major arrays. Other arrays include a local array PHI for the restricted variable (used 
in the prolongation stage) and several short arrays inside the vectorized loop. A lexicographic 
storage convention is used. Thus variables are stored with increasing I index for each J. The 
coarsest grid is stored first in the total array. 

Colouring the nodes 

The aspect of colouring the nodes and visiting them in sequence represents the main technique in 
the vectorization process. Because dependency relations cannot exist in a vectorizable loop, it is 
necessary to solve, at any time, only those nodes which are completely independent from each 
other. This separation of the nodes depends on the finite difference stencil used. Several colouring 
schemes have been discussed by O’Leary.’’ For the Possion equation, the five-point stencil is easily 
isolated into two colours (red-black) and efficient data structures with long vector lengths are 
achieved. For the relaxation operator used here, because of the symmetrical update (i.e. solving 
velocities on both faces of the cells), a two-colour system does not remove the dependency. This can 
be seen in Figure 1, where it is seen that calculation of u1 depends on uj, which is solved at a cell of 
the same colour. For complete independence, the SCGS operator requires eight colours, as shown 
in Figure 2. Alternatively sixteen colours can be used for convenience in programming and 
reduction in storage for the temporary arrays. 

In this study, two different schemes of colouring are used. In the first, a combination of two and 
sixteen colours is used. Two colours are used on the first few grids in order to preserve adequate 
vector lengths. Because the two-colour ordering does not remove the dependencies completely, old 
values are used for values calculated further down in the loop. This means that some of the terms in 
the convective fluxes are evaluated at the previous iteration (the convergence of the algorithm 
appears not to be affected much by this practice). On finer grids (greater than 32 x 32 nodes) sixteen 

Figure 1 .  Two-colour ordering system 
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colours are used. In this way, a compromise between storage for temporary arrays (to store the 
results of one colour) and vector lengths is achieved. In the second system, a two-colour ordering is 
used, but the nodes are processed line by line. Thus, each line (say of constant J) is processed in 
sequence. For each line, the nodes are processed in red and black colour ordering. On the first few 
coarser grids, the whole domain red-black ordering can be used to preserve adequate vector 
lengths, but this was not done in this system because of the relatively smaller time spent on these 
grids. Thus on 4 x 4 grids, the vector length was only two, becoming 4 and 8 on the next two grids. 

The first system of colouring introduces indirect addressing during the load stage of the arrays. 
The indirect addressing results because the loop index is the node number, and for each node, the I 
and J indices are computed. Thus the programming for the loading of arrays looks like 

D O n N C = l , N C T  
I = IB(NC) 
J = JB(NC) 

IJ = I + (J - 1)* IMAX + IOFF  
UI(NC) = U(IJ) 

n CONTINUE 

where NCT is total number of cells arranged in red-black ordering and IB, JB give the column and 
row numbers. The offset for grids is denoted by IOFF. A subsequent loop then uses the loaded 
arrays for assembling the finite difference coefficients and solving the equations. 

The line-by-line processing removes the indirect addressing. In this way, the above loop becomes 

DO 121 J = 2,JMAX- 1 
IB = O  

IJF = (J - 1)* IMAX + IOFF 
DO n2 I=IFST,IMAX-1,2 

Figure 2. Eight-colour ordering system 
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I B = I B + l  
U1 (IB) = U(I + IJF) 

n2 CONTINUE 
n ,  CONTINUE 

where IFST gives the first cell at any line J and IMAX, JMAX the total numbers of grid nodes in 
each direction. Programmed in this way, the n2 loop fully vectorizes and runs faster than the earlier 
version, resulting in approximately 25 per cent reduction in total CPU time. Because of this speed- 
up, the second system is advocated. 

Boundary indices and conditional IFS  

Normally, for scalar equations on a non-staggered mesh, the equations range only over the 
interior nodes and no special treatment for boundary conditions is necessary. For a staggered mesh 
with coupled processing of the two (or three) velocities and the pressure, conditional IFs are 
necessary to eliminate the updating of the velocity on the boundary. This inhibits vectorization. To 
remove the conditional arrays some indices (0 and 1 vectors) for the boundary nodes are created. 
All nodes are processed in the same loop, but the appropriate residuals and the equations are later 
masked by the boundary indices. In this way, a few computations are wasted, but the overall loop 
vectorizes. Another place where I F  statements are encountered is in the absence of the addition of 
restricted residuals to the fine grid equations. To eliminate a conditional jump to a different 
statement, a separate subroutine for the fine grid solution is used. This routine is identical to the 
other solve subroutine in all places except where restricted residuals are added to the right-hand 
sides of the equations. 

4. PERFORMANCE 

The vectorized code is used to repeat earlier calculations' made on a scalar (IBM3033) machine for 
the laminar flow in a square cavity problem. At this stage only the two-dimensional code is 
vectorized, but the concepts discussed above are equally valid for three-dimensional situations. 
Calculations on the CRAY X-MP are made by using only one processor. The CFT 1.15 compiler 
with CRAY operating system COS 1.14 at Mendota Heights is used. Calculations have been made 
for several finite difference grids up to 512 x 512 nodes and for three different Reynolds numbers 
(u,d/v) of 100,400, and 1000. The calculations are made for an error tolerance criterion of on 
the norm of residual.' For each calculation, detailed statistics are provided on the overall speed- 
ups due to vectorizations and the percentage contributions by each grid. 

First, the convergence history with lexicographic ordering and red-black ordering is compared 
for three selected sets of calculations (Figures 3-5). It is seen that the red-black ordering converges 
somewhat faster than the lexicographic ordering. However, because of other complexities such as 
non-linearity, coupling, anisotropic coefficients and the mixing of colouring strategies, the 
smoothing factor is not reduced as much as in the case of linear Poisson or Laplace equations with 
constant coefficients. 

Table I gives the CPU times and the speed-ups due to vectorization. It is seen that a maximum 
speed-up of 29 is achieved for Re = 400 on the 256 x 256 grid. For other sets, the speed-up is 
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Figure 3. Rates of convergence of lexicographic (A) and red-black (B) ordering schemes; Re = 100, 128 x 128 grid 
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Figure 4. Rates of convergence of lexicographic (A) and red-black (B) ordering schemes; Re = 400, 128 x 128 grid 
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Figure 5. Rates of convergence of lexicographic (A) and red-black (B) ordering schemes; Re = 1O00, 128 x 128 grid 
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Table I .  CPU times (s) for scalar and vector versions on CRAY X-MP 
for Re = 100 

Grid 
Calculation 64 x 64 128 x 128 256 x 256 512 x 512 

R e =  100 
Scalar CRAY 1.47 7.05 34.00 150.20 
Vector CRAY 0.64 2.05 7.79 41.47 

Scalar CRAY 1.95 9.35 40.20 222.6 
Vector CRAY 1.33 2.65 8.12 38.95 

Scalar CRAY 4.60 16.40 55.40 227.40 
Vector CRAY 2.18 6.02 17.34 46.0 1 

Re = 400 

R e =  1000 

Table 11. Percentage time spent and speed-up* for 
R e  = 100 

Grid 
Subgrid 64 x 64 128 x 128 256 x 256 

4 x 4  

8 x 8  

16 x 16 

32 x 32 

64 x 64 

128 x 128 

256 x 256 

Prolongation 

Restriction 

9.37 
(5.01) 
7.52 

(8.6) 
10.24 

(14.30) 
20.24 

(20.50) 
38.54 

(25.12) 
- 

- 
- 

- 
7.08 

(7.67) 
7.00 

(19.01) 

3.15 

2.77 
(8.65) 
4.22 

(14.26) 
8.72 

(20.50) 
20.05 

(2 5.9 5) 
46.07 
(28.18) 

(5.01) 

~ 

- 

8.09 
(8.18) 
6.93 

(23.15) 

0.9 1 
(4.90) 
0.88 

(8.48) 
1.46 

(13.83) 
3.05 

(19.01) 
7.53 

(24.31) 
20.93 

(27.61) 
49.90 

(27.70) 
8.33 

(8.48) 
6.99 

(2 3.40) 

* Based on vector timings and IBM 3033 computer 

smaller because of the short vector lengths on the coarse grids. In Tables 11-IV, more detailed 
statistics of the speed-up are given. Here, the percentage time spent on each grid and the speed-up 
on each grid in comparison with the IBM 3033 calculation (with vectorized version) are tabulated. 
From these tables, it is seen that on the coarsest (4 x 4) grid, the speed-up is purely due to 
different scalar speeds on the two machines. For this grid, the vector length is two. The speed-up 
ratio is seen to increase on finer grids with an eventual speed-up of roughly 28 on grids of size 
128 x 128 (vector length equal to 64) and larger. The restrictions and prolongations, which take 
roughly eight per cent of the time each, have speed-ups of around 18 and 8, respectively. Again, 
the suboptimal vector lengths on the coarse grids are the cause of this decreased efficiency. 

The calculated streamlines for the three Reynolds numbers are shown in Figures 6-8. 



VECTORIZED MULTIGRID FLUID FLOW CALCULATIONS 645 

Table 111. Percentage time-spent and speed-up* for 
Re = 400 

Grid 
Subgrid 64 x 64 128 x 128 256 x 256 

4 x 4  

8 x 8  

16 x 16 

32 x 32 

64 x 64 

128 x 128 

256 x 256 

Prolongation 

Restriction 

14.93 
(4.90) 
17.17 
(8.26) 
15.93 

(1 3.30) 
15.09 

( 19.0) 
2 1.92 

(22.85) 

- 

6.48 
(7.06) 
8.48 

( 14.68) 

7.76 

8.70 
(8.47) 
7.79 

(14.37) 
8.45 

(19.22) 
16.78 

(24.21) 
35.31 

(26.41) 

(4.94) 

- 

- 

7.54 
(7.80) 
7.68 

( 19.06) 

2.65 

3.17 
(7.91) 
2.97 

( 12.96) 
3.50 

(18.26) 
7.48 

(24.08) 
20.01 

(26.38) 
44.46 

(25.67) 
8.4 1 

(8-29) 
7.37 

(21.56) 

(4.74) 

* Based on vector timings and IBM 3033 computer 

Table IV. Percentage time spent and speed-up* for 
Re = 1000 

Subgrid 
Grid 

128 x 128 64 x 64 256 x 256 

4 x 4  

8 x 8  

16 x 16 

32 x 32 

64 x 64 

128 x 128 

256 x 256 

Prolongation 

Restriction 

10.02 6.67 
(5.1 1) (5.01) 
18.47 12.1 1 
(8.71) (8.49) 
2027 13.47 

(14.11) (13.70) 
16.75 12.66 

(20.62) (19.77) 
17.52 16.58 

(24.80) (24.83) 
- 20.49 
- (27.10) 
- - 

- - 

7.27 8.21 
(7.24) (7.65) 
9.70 9.80 

(1 5.57) (1 8.04) 

3.29 
(4.70) 
6.68 

(7.96) 
8.40 

(12.97) 
8.25 

(1 8.35) 
9.71 

(23.08) 
17.45 

(26.62) 
27.64 

(26.29) 
8.97 

(8.07) 
9.65 

(19.63) 

* Based on  vector timings and IBM 3033 computer 
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\ / 
Figure 6. Contours of stream function; Re = 100 Figure 7. Contours of stream function; Re = 400 

h / 

Figure 8. Contours of stream function; Re = 1000 

5. CONCLUSIONS 

In this paper the performance of a vectorized multigrid based calculation procedure for steady, 
incompressible internal flows has been discussed. The algorithm has general applicability and can 
be used for calculation of a wide variety of engineering flows including those in gas turbine and 
Ramjet combustors, industrial furnaces, flows in cavities, etc. The algorithm is easily vectorizable 
because of the use of a point relaxation scheme. The vectorization of the algorithm and the 
observed efficiencies are presented in this paper. It is observed that speed-ups of up to a factor of 29 
are possible in comparison with a scalar code run on the IBM 3033 machine. An average speed-up 
of 5 is obtained due to vectorization alone if adequate vector lengths can be maintained. Typical 
time for a one million node laminar flow calculation is estimated to be three minutes. 
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NOMENCLATURE 

A 
b,  to b ,  
d 
P 
r ,  to r ,  
Re 
S 
u, 
x9 Y 

P 
V 

Central coefficient in the finite difference equation 
Update values to the velocities and pressure 
Cavity depth 
Pressure 
Residuals in the equations 
Reynolds number 
Additional source terms in the equations 
Velocities in x and y directions 
Co-ordinate directions 
Kinematic viscosity 
Density 

Subscripts 

i, j 
C Central value 
E East value 
N North value 
S South value 
W West value 
W Wall value 

Along x and y directions, respectively 

Superscripts 

u, u u and u velocities 
Corrections , 
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